Integral Geometry of Tensor Valuations
نویسندگان
چکیده
We prove a complete set of integral geometric formulas of Crofton type (involving integrations over affine Grassmannians) for the Minkowski tensors of convex bodies. Minkowski tensors are the natural tensor valued valuations generalizing the intrinsic volumes (or Minkowski functionals) of convex bodies. By Hadwiger’s general integral geometric theorem, the Crofton formulas yield also kinematic formulas for Minkowski tensors. The explicit calculations of integrals over affine Grassmannians require several integral geometric and combinatorial identities. The latter are derived with the help of Zeilberger’s algorithm. MSC: 52A20; 52A22; 53C65
منابع مشابه
Research Training Network “ Phenomena in High Dimension ” EDUCATIONAL WORKSHOP ON GEOMETRIC INEQUALITIES In honour of the 65 th birthday
S OF MAIN LECTURES Richard. J. GARDNER (Western Washington Univ.,U.S.A ) The dual Brunn-Minkowski theory and some of its inequalities As the title suggests, the focus of the talk is the dual Brunn-Minkowski theory, initiated by Erwin Lutwak in 1975, and developed since by him and others. First, an elementary introduction is provided to the basics, dual mixed volumes of star bodies, the dual Ale...
متن کاملLefschetz theorem for valuations and related questions of integral geometry
We continue studying the properties of the multiplicative structure on valuations. We prove a new version of the hard Lefschetz theorem for even translation invariant continuous valuations, and discuss problems of integral geometry staying behind these properties. Then we formulate a conjectural analogue of this result for odd valuations.
متن کاملOn the k-nullity foliations in Finsler geometry
Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...
متن کامل2 5 M ay 2 00 9 Valuations on manifolds and integral geometry .
One constructs new operations of pull-back and push-forward on valuations on manifolds with respect to submersions and immersions. A general Radon type transform on valuations is introduced using these operations and the product on valuations. It is shown that the classical Radon transform on smooth functions, and the well known Radon transform on constructible functions with respect to the Eul...
متن کاملLefschetz theorem for valuations , complex integral geometry , and unitarily invariant valuations
We obtain new general results on the structure of the space of translation invariant continuous valuations on convex sets (a version of the hard Lefschetz theorem). Using these and our previous results we obtain explicit characterization of unitarily invariant translation invariant continuous valuations. It implies new integral geometric formulas for real submanifolds in Hermitian spaces genera...
متن کامل